Modeling of regional climate change effects on ground-level ozone and childhood asthma.
نویسندگان
چکیده
BACKGROUND The adverse respiratory effects of ground-level ozone are well established. Ozone is the air pollutant most consistently projected to increase under future climate change. PURPOSE To project future pediatric asthma emergency department visits associated with ground-level ozone changes, comparing 1990s to 2020s. METHODS This study assessed future numbers of asthma emergency department visits for children aged 0-17 years using (1) baseline New York City metropolitan area emergency department rates; (2) a dose-response relationship between ozone levels and pediatric asthma emergency department visits; and (3) projected daily 8-hour maximum ozone concentrations for the 2020s as simulated by a global-to-regional climate change and atmospheric chemistry model. Sensitivity analyses included population projections and ozone precursor changes. This analysis occurred in 2010. RESULTS In this model, climate change could cause an increase in regional summer ozone-related asthma emergency department visits for children aged 0-17 years of 7.3% across the New York City metropolitan region by the 2020s. This effect diminished with inclusion of ozone precursor changes. When population growth is included, the projections of morbidity related to ozone are even larger. CONCLUSIONS The results of this analysis demonstrate that the use of regional climate and atmospheric chemistry models make possible the projection of local climate change health effects for specific age groups and specific disease outcomes, such as emergency department visits for asthma. Efforts should be made to improve on this type of modeling to inform local and wider-scale climate change mitigation and adaptation policy.
منابع مشابه
A Statistical Modeling Framework for Projecting Future Ambient Ozone and its Health Impact due to Climate Change.
The adverse health effects of ambient ozone are well established. Given the high sensitivity of ambient ozone concentrations to meteorological conditions, the impacts of future climate change on ozone concentrations and its associated health effects are of concern. We describe a statistical modeling framework for projecting future ozone levels and its health impacts under a changing climate. Th...
متن کاملThe role of natural variability in projections of climate change impacts on U.S. ozone pollution
Climate change can impact air quality by altering the atmospheric conditions that determine pollutant concentrations. Over large regions of the U.S., projected changes in climate are expected to favor formation of ground-level ozone and aggravate associated health effects. However, modeling studies exploring air quality-climate interactions have often overlooked the role of natural variability,...
متن کاملModeling the Environmental Benefits of Alternative Fuel Vehicles and Transportation Demand Policies
Mobility and energy use in the transportation sector -cars, trucks, trains and planes -is a major source of air pollution. Air pollutant emissions from cars and trucks are particularly problematic because they occur near the ground, often in densely in populated areas. For example, they contribute to the formation of ground-level ozone, a problem in urban areas in various regions of the country...
متن کاملModeling of Climate Change Effects on Groundwater Resources: The Application of Dynamic Systems Approach
The purpose of the present study was the simulation of climate change effects on groundwater resources in Iran by using the dynamic systems approach. The approach was performed through system dynamics modeling process including problem explanation, system description, model development, model testing, and the use of the model for policy analysis. The impact of the application of various exogeno...
متن کاملLinking global to regional models to assess future climate impacts on surface ozone levels in the United States
[1] We investigate the impact of climate change on future air quality in the United States with a coupled global/regional scale modeling system. Regional climate model scenarios developed by dynamically downscaling outputs from the GISS GCM are used by CMAQ to simulate present air pollution climatology, and modeled surface ozone mixing ratios are compared with recent observations. Though the mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of preventive medicine
دوره 41 3 شماره
صفحات -
تاریخ انتشار 2011